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Electronic nose technique potential monitoring mandarin maturity
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Abstract

Over the past years, electronic nose technology opened the possibility to exploit information on behavior aroma to assess fruit ripening
stage. The objective in this study was to evaluate the capacity of electronic nose to monitoring the change in volatile production of mandarin
during different picking-date, using a specific electronic nose device (PEN 2). Principal component analysis (PCA) and linear discriminant
analysis (LDA) were used in order to investigate whether the electronic nose was able to distinguish among different picking-date (ripeness
states). The loadings analysis was used to identify the sensors responsible for discrimination in the current pattern file. The results obtained
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rove that the electronic nose PEN 2 can discriminate successfully different picking-date on mandarin using LDA analysis. But,
ose was not able to detect a clear difference in volatile profile on mandarin using PCA analysis. During external validation using
btained to classified 92% of the total samples properly. Some sensors have the highest influence in the current pattern file for ele
EN 2. A subset of few sensors can be chosen to explain all the variance. This result could be used in further studies to optimize
f sensors.
2005 Elsevier B.V. All rights reserved.
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. Introduction

In recent years, extensive research has been focused on
he development of non-destructive techniques for measur-
ng quality attributes of fruit. In fact the quality concept is

ainly related to the consumer perception and preference
or foods. The consumer perception is based on the applica-
ion of the five senses and for this reason the instrument “par
xcellence” to determine the quality are the human senses.
ctually, panels of trained people are used to fix and label

he criteria of quality, to assess the quality of food, and to
elp in the development of new products. From an instru-
ental point of view there is an obvious correlation between

he human senses and the application of optical, chemical
nd tactile sensors. For several years the instrumental mea-
ure of the fruit quality has been mostly based on the basis
f rheological properties such as texture and firmness[1].
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The main disadvantage of the majority of these techni
is that they are not practical for cultivars or storage stat
Moreover, most of them require the destruction of the s
ples used for analysis. This is why, nowadays, optimal ha
dates and predictions of storage life are mainly based on
tical experience, but, let these critical decisions to subje
interpretation implies that large quantities of fruit are h
vested too soon or too late and reach consumer mark
poor condition.

In particular, many researches have been focused o
development of non-destructive techniques for measu
quality attributes of fruit. Among them aroma sensing
particularly promising to provide information on those
rameters affected by the overall fruit quality.

A strategy for determining the state of ripeness con
of sensing the aromatic volatiles emitted by fruit using e
tronic olfactory systems[2]. These systems are concern
with the exploitation of the information contained in
headspace of fruits, they have been studied in the recen
with the conventional analytical chemistry equipment,
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the correlation between the state of over-ripening and the fruit
aroma has also been found both in quantitative and qualitative
terms. Beside, some specific compounds have been identified
as the responsible of the aroma of particular fruit.

In the last decade, the electronic nose technology has
opened the possibility to exploit, from a practical point of
view, the information contained in the headspace in many
different application fields. Among them, food analysis is
certainly one of the most often practiced.

The electronic nose offers a fast and non-destructive al-
ternative to sense aroma, and, hence, may be advantageously
used to predict the optimal harvest date. Commercially
available electronic noses use an array of sensors combined
with pattern recognition software. There have been several
reports on electronic sensing in environmental control,
medical diagnostics and the food industry[3,4]. Some
authors reported positive applications of electronic nose
technology to the discrimination of different fruits quality,
and many experiments were performed, such as: testing
orange[5], melons[2,6], blueberries[7], pears[8,9], peaches
[10–12], bananas[13], apples[11,14–16] and nectarines
[12].

The objectives in this research are: (1) to evaluate the ca-
pacity of electronic nose monitoring mandarin maturity dur-
ing the different harvest periods, using a specific electronic
nose device (PEN 2) based on sensor array and suitable pat-
t po-
n DA)
t le to
d re-
s sing
l

2

2

” (
r ples
w hard
i n-
d 15
i y 0),
O day;
w 0, re-
s hty
m sure-
m

uma
m ples
w hard,
Z De-
p t the
fi tem-
b enty

Fig. 1. Schematic diagram of the electronic-nose measurements and gas flow
of PEN 2 during the experiments.

mandarin fruits each group, and a total of 100 nose measure-
ments were performed for external validation.

Because fruits were harvested randomly from different
trees, pooled, then the experimental design was completely
randomized with each fruit as an experimental unit. All fruits
of each sample were individually numbered.

2.2. Electronic nose data acquisition and analysis

An electronic nose device PEN2, provided by (WMA
Airsense Analysentechnik GmbH) Schwerin, Germany, was
used. The portable electronic nose PEN2 has an array of 10
different metal oxide sensors positioned into small cham-
ber (V = 1.8 mL). InFig. 1 shows schematic diagram of the
electronic-nose measurements and gas flow of PEN 2 during
the experiments.Table 1lists all used sensors and their main
applications. This table contains current known or specified
reaction.

Each fruit was placed into an airtight glass jar with a vol-
ume of 1 L (concentration chamber). The glass jar was then
closed and the headspace inside it was equilibrated for 1 h.
Preliminary experiments showed that after 0.5 h of equilibra-
tion the headspace reached a steady state and experiments
were conducted after 0.5 h of equilibration. One luer-lock
needle (20 g) connected to a Teflon-tubing (3 mm) was used to
p ir ac-
c space
g e with
a ess,
t ation,
m ed by
a uits
d phase,
a ment
c ushes
t sure-
m ts the
l r sen-
s as 1 s.
ern recognition techniques; (2) to study principal com
ent analysis (PCA) and linear discriminant analysis (L

echniques to obtain whether the electronic nose be ab
istinguish different ripeness; (3) to identify the sensors
ponsible for a discrimination in the current pattern file, u
oading analysis.

. Materials and methods

.1. Experimental material

Chinese variety, Satsuma mandarin “Zaojin JiaoganC.
eticulata) was selected to the experiment. All the sam
ere hand harvested in 2003 from the experimental orc

n Department of Horticulture, Zhejiang University. Ma
arin were harvested at five different picking-dates with

ntermittent days: September 19 (the first picking-day, da
ctober 3, 18, 31 (the second, third and fourth picking-
ere expressed as day 15, day 30, day 45 and day 6
pectively) and November 15 (the five picking-day). Eig
andarin fruits each group, and a total of 400 nose mea
ents were performed.
During external validation, the same variety, Sats

andarin, was selected to the experiment. But the sam
ere hand harvested from other orchard (Jingde orc
hejiang), 12 km far from the experimental orchard in
artment of Horticulture. Mandarins were harvested a
ve same picking-dates with 15 intermittent days: Sep
er 19, October 3, 18, 31 and November 15 in 2003. Tw
erforate the seal (plastic) of the vial and to absorb the a
umulated inside it, during the measurements. The head
as was pumped over the sensors of the electronic-nos
flow of 400 mL/min; during the measurements proc

hree different phases can be distinguished: concentr
easurement and stand-by. The electro-valves, controll
computer program, guide the air though different circ

epending on the measurement phase. No matter the
irflow is always kept constant though the measure
hamber. During the measurement phase, the bomb p
he volatiles though a closed loop that includes the mea
ent and concentration chambers. No air enters or exi

oop. The measurement phase lasts 60 s, time enough fo
ors to reach a stable value. The collected data interval w
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Table 1
Sensors used and their main applications in PEN 2

Number in array Sensor-name General description Reference

1 W1C Aromatic compounds Toluene, 10 ppm
2 W5S Very sensitive, broad range sensitivity, react on nitrogene oxides, very sensitive with

negative signal
NO2, 1 ppm

3 W3C Ammonia, used as sensor for aromatic compounds Benzene, 10 ppm
4 W6S Mainly hydrogen, selectively, (breath gases) H2, 100 ppb
5 W5C Alkanes, aromatic compounds, less polar compounds Propane, 1 ppm
6 W1S Sensitive to methane (environment) ca. 10 ppm. Broad range, similar to No. 8 CH3, 100 ppm
7 W1W Reacts on sulfur compounds, H2S 0.1 ppm. Otherwise sensitive to many terpenes

and sulfur organic compounds, which are important for smell, limonene, pyrazine
H2S, 1 ppm

8 W2S Detects alcohol’s, partially aromatic compounds, broad range CO, 100 ppm
9 W2W Aromatics compounds, sulfur organic compounds H2S, 1 ppm

10 W3S Reacts on high concentrations >100 ppm, sometime very selective (methane) CH3, 10 CH3, 100 ppm

When a measurement is completed, a stand-by phase is acti-
vated (60 s). The purpose is to clean the circuit and return sen-
sors to their baseline. Clean air enters the circuit, crosses the
measurement chamber first, the empty concentration cham-
ber afterwards, and pushes the remaining volatiles out of the
circuit.

Sensors were held at the temperature of 20◦C and 50–60%
RH during all experiments, the temperature was maintained
constant with an accuracy of±1◦C. When the sensors are
exposed to volatiles, during the measurement phase, the com-
puter records the resistance changes that the sensors experi-
ence. When the measurement was completed, the acquired
data was properly stored for later use.

The set of signals of all sensors during measurement of a
sample is a pattern. Pattern of multiple measurements deal-
ing with the same problem are stored in a Pattern File and act
as the Training Set. The pattern data were recorded, checked
visually and analyzed using WinMuster (version 1.5.2.4 Jun
2003, copyright 1996–2002 WMA Airsense Analysentech-
nik GmbH 2003).

2.3. Principal component analysis, linear discriminant
analysis and loadings analysis

Pattern recognition algorithms and data processing tech-
niques are a critical component in the implementation, devel-
o ose
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sis. Discriminant function analysis (DFA) is a parametric
learning classifier, which can be used for both qualitative
and quantitative analysis. There are many ways of perform-
ing DFA, but the classical approach is loading discriminant
analysis (LDA). Principal components analysis (PCA) is a
non-parametric projection method and is often used to im-
plement a linear supervised classifier, in conjunction with
discriminant analysis. This technique has been widely used
for researcher to display the response of an EN to simple and
complex odors and it provides qualitative information for EN
pattern recognition file[17].

Using the principal component analysis (PCA) the mea-
sured data, previously trained will be transformed into 2D or
3D coordinates. This is carried out through the data reduc-
tion that extracts the most important information from the
database as a result. The results of training phase can be dis-
played in a two dimensional view. PCA is based on a linear
project of multidimensional data into different coordinates
based on maximum variance and minimum correlation[18].
Training pattern from measurements of similar samples will
be located close to each other after transformation. Hence,
the graphical output can be used for determining the differ-
ence between groups and comparing this difference to the
distribution of pattern within one group.

The linear discriminant analysis (LDA) is the first step of
the discriminant function analysis (DFA). The LDA calcu-
l a 2
o ffer-
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L iven
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t in
o

rin-
c us-
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sing
t spon-
pment and successful commercialization of Electronic N
EN) systems. There are a large amount of pattern rec
ion techniques available. In order to select the approp
attern recognition algorithm for EN application, it is imp

ant to understand the fundamental nature of the data
nalyzed. Statistical and non-parametric analysis techn
re the most known and commonly used to analyze EN

Classical statistical methods, using a probability mo
ere first developed and used in the field of applied ma
atic, now called chemometrics. Several mathematical m
ds could be applied to the multi-component analysi
dors. Categorization of classifiers, can be made bas
ertain features, such as supervised or unsupervised,
ased on model-free, and qualitative or quantitative an
l

ates the discriminant functions and similar to the PCA—
r 3 dimensional display of the training set data. The di
nce between PCA and LDA is, that PCA does not care a

he relation of a data points to the specified classes, whi
DA calculation uses the class information that was g
uring training. The LDA takes care about the distribu
ithin classes and the distances between them. Ther

he LDA is able to collect information from all sensors
rder to improve the resolution of classes.

The sum of displayed variances is higher; the further p
ipal components also contain discriminant information
ng PCA and LDA.

The loadings analysis is well correlated to the PCA. U
his analysis the sensors can be investigated for their re
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sibility for the discrimination given by the trained patterns.
Sensors, located near the center of the diagram (0, 0) have
a minor responsibility for the distribution of pattern in the
PCA plot. They may be switched off because they may have
negative influence on the pattern resolution, when particular
normalizations are selected. The Loadings analysis will help
to identify the sensors responsible for discrimination in the
current pattern file. Single sensors may be switched off for
analysis as long as they have no positive influence on the
identification process.

3. Results

3.1. Electronic nose response to fruit aroma

Fig. 2shows a typical response of ten sensors during mea-
suring mandarin fruit. Each curve represents a different sen-
sor transient. The curves represent sensor conductivity of one
sensor of array against time due to electro-valve action when
the volatiles from the fruit reach the measurement chamber.
In that transition, the clean airflow that reaches the measure-
ment chamber is substituted by airflow that comes from the
concentration chamber, closing a loop circuit between both
chambers. It can be seen that, after an initial period of low
and stable conductivity (when only clean air is crossing the
m y and
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4
r for an
e
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s varia-
t rray
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Fig. 3. Relative conductivity (Go/G) vs. sensor number at 42 s.

crease or decrease as picking-date that vapors from the fruit
reached the measurement chamber.

With except of mandarin of picking-date (unripe man-
darin), during the mandarin fruit ripeness process on the tree,
the respiration decreased, meaning a decrease of the vapors
generated, which vapors reach in a less quantity, the average
signal of sensor array decrease (Fig. 4). The result does not
agree with those obtained by Brezmes et al. testing peaches
and pears[11].

It can be inferred that the sensors 2, 7, 9 have higher values,
which may implied that those are important on the current
pattern file and evaluated the picking-date (this is presented
in paragraph 3.5 andFig. 8).

3.3. Classification of mandarin using PCA and LDA

In order to investigate whether the electronic nose was
able to distinguish among different picking-date, PCA and
LDA analysis were applied in this research. The analysis was
carried out using the signal stability at 42 s in mandarin.
easurement chamber), conductivity increases sharpl
hen stabilizes after 30 s. The each sensor signal gen
tabilizes and was considered to use in analysis of elec
ose. In this research, the signal of each sensor at res
2 s was used in analysis of electronic nose.Fig. 3shows the
esponse value of each sensor in Cartesian coordinate
xample at 42 s.

.2. Signal analysis

Fig. 4shows the evolution of the signals generated by
ensor array. Each line represents the average signal
ion of 80 mandarins respectively for one sensor of the a
10 sensors), linking to the measurements of conductan

Fig. 2. Ten sensors responses to mandarin fruit aroma.
 Fig. 4. Relative conductivity of each sensor vs. picking-date.
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Fig. 5. PCA analysis for mandarins (80 samples).

PCA and LDA analysis results are shown inFigs. 5 and 6.
Two figures show that analysis results on a two-dimensional
plane, principal component 1 (PC1) and principal component
2 (PC2) inFig. 5and first and second linear discriminant LD1
and LD2 inFig. 6.

PCA is a linear combinatorial method, which reduces the
complexity of the data-set. The inherent structure of the data-
set is preserved while its resulting variance is maximized.
PCA has been performed to describe the aroma changes dur
ing picking process.Fig. 5shows that the score plot inside the
ellipses and represent the variation around each picking data
(maturity state) in the space. The processed data shows a shif
erratic of the different picking date along the first principal
component, PC1, which explains 90.89% of the total vari-
ance with value 96.427%. The second principal component

(PC2) explains 5.54% of the variation and shows no partic-
ular trend with picking date. In spite of the clear separation
that was achieved among some groups (day 0, day 45 and 60)
using the analysis (PCA), other groups of samples do overlap
each other. The system has not enough resolution to fallow
picking date or mandarin ripeness process.

When the LDA analysis (Fig. 6), using the same data of
five groups (picking date), the fruits were clearly distinguish-
able from each group. In this plot about 71.193% of the total
variance of the data is displayed. LDA function 1 (LD1) and
function 2 (LD2) accounted for 49.725 and 21.469% of the
variance respectively.

Fig. 6shows that the classification for day 0 had one not-
classified sample, this result only representing 1.25% of the
total samples in this group (note: not-classified, is the given
name to those samples that were located out of the class group
after establish the imaginary ellipse). The second group (day
15) had six not-classified samples, representing a total vari-
ance of 7.5% of the total. Four samples were classified into
group of day 0, and one sample is very near to the border of
day 0; the other one of not-classified sample is located close
to third group (day 30) on opposite side. The fourth group
(day 45) also had one not-classified sample, which was lo-
cated inside of the fifth group (day 60). The two groups of
day 30 and day 60 can be classified from the other groups.
The method is very efficient to differ the mandarin maturity
s % of
t .

ath-
e ut a
s and
s days
t his
m gath-
e arins
w

with
a ver,
t ction
o 30
h D2)
i inate
g

3
u

am-
p -
t not-
c pat-
t

ata
i 2)
a ively.
Fig. 6. LDA analysis for mandarins (80 samples).
-

t

tates; also the LDA analysis was able to classify a 98
he total samples (n = 400) in each respective group (five)

In spite of the clear location among all the classes by g
ring date of the mandarin using the analysis (LDA), b
mall overlap joint was achieved between the first group
econd (day 0 and day 15), meaning that in the first 15
he mandarin volatiles production do not differ much. T
ay be reason that the classification was conducted by
ring date, not by ripeness, and ripeness of some mand
ere near between in the first 15 days and second.
The variation of each group along the abscissa (LD1)

notable increment was shown in LDA analysis; howe
he group of day 60 showed an advance in negative dire
n abscissa in relation with its former. The group of day
as also clear confines on the axis of the ordinates (L

n which shows a clear upward displacement along ord
etting away from the other groups.

.4. External validation analysis for mandarin data
sing LDA

External validation analysis for the new data set (100 s
les) using LDA is shown inFig. 7. Before perform the ex

ernal validation analysis, all those samples that were
lassified during the training set were excluded from the
ern recognition file.

In this plot about 70.67% of the total variance of the d
s displayed. LDA function 1 (LD1) and function 2 (LD
ccounted for 48.73 and 21.94% of the variance, respect
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Fig. 7. LDA external validation analysis for mandarin (x ando represent the
not-classified samples for day 0 and day 15 respectively).

The classification for start day had four not-classified sam-
ples, both of them located into the second group (day 15); this
second group (day 15) also had four not-classified samples,
both of them situated into the first group (day 0). All samples
corresponding to groups third, fourth and fifth (days 30, 40
and 60), were all well distributed into each respective group.
Of the total of examples used for the validation set only eight
of them were not-classified in their respective groups accord-
ing to the different maturity states, this means only 8% of the
total samples.

3.5. Loading analysis

The loading analysis will help to identify the important of
sensors responsible for discrimination in the current pattern
file. Single sensors may be switched off for analysis if they
have rather smaller influence on the identification process.
Sensors with loading parameters near to zero for a particu-
lar principal component have a low contribution to the total
response of the array, whereas high values indicates a dis-
criminating sensor.

The loading analysis was performed, a loading plot of the
loading factors associate to PC1 and PC2 for mandarin shown
in Fig. 8. It was also shown that the relative importance of the
sensors in the array. The loading factor associates to first and
second principal components for each sensor is represented
T ading
p ensor
F ence
i 6, 8
a lt in
F ding
f

r for
a tion

Fig. 8. Loading analysis related to PC1 and PC2 for mandarin total variance
in mandarin 96.874%.

to the total response of the array. Hence, nearly a subset of
few sensors can be chosen to explain all variance. This result
could be used in further studies to optimize the number of
sensors.

4. Conclusions

The obtained results prove that the electronic nose PEN 2
can differ successfully the mandarin ripeness, and have been
demonstrated that electronic nose technology has excellent
sensitivity and selectivity for differentiating mandarin on the
basis of picking-date.

The electronic nose was not able to detect a clear differ-
ence in volatile profile on mandarin using PCA analysis; but
it achieves a clear separation in all the cases using LDA anal-
ysis.

Sensors 2, 7 and 9 in mandarin have the highest influence
in the current pattern file. Hence, nearly a subset of few sen-
sors can be chosen to explain all the variance. This result
could be used in further studies to optimize the number of
sensors.
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